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ABSTRACT

An image can be segmented by classifying its pixels using
local properties as features. Two intuitively useful properties
are the gray level of the pixel and the "busyness", or gray 1
level fluctuation, measured in its neighborhood. Busyness
values tend to be highly variable in busy regions; but great
improvements in classification accuracy can be obtained by
smoothing these values prior to classifying. An alternative
possibility is to classify probabilistically and use relaxation

to adjust the probabilities.
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1. Introduction

t; An image can often be usef.lly segmented into regions by
classifying its pixels using local properties of the pixels

as features. Properties that can be used for this purpose,

in addition to the gray level of the pixel itself, ihclude the

gray levels of neighbors [l]; average gray levels measured over

neighborhoods of various sizes [2}; and local measures of
"busyness" [3]). Using such properties, one can attempt to seg-
ment an image into homogeneous regions each of which has charac-
teristic first- and second- (or higher-~) order gray level
statistics.

Subjectively, the differences between regions in an image
often seem to be expressible in terms of mean gray level and
mean "busyness"; thus the feature pair (gray level, local busy-
ness) is of special interest as a basis for segmentation [3].

However, busyness is hard to measure locally, and yields values

which are highly variable even in a region that appears to be
uniformly busy. Thus pixel classification based on local busy-
ness value (together with gray level) is likely to make many
errors in busy regions.
This paper studies the effectiveness of smoothing the
- local busyness values prior to using them for classification.

It is shown that great reductions in error rate can be achieved

this way. Results are compared for two different local busyness

measures, based on two neighborhood sizes (3x3 and 5x5), using




median filtering based on two neighborhood sizes (3x3 and 5x5),

The use of probabilistic relaxation to improve the classifica-

tion results is also investigated.




2. Busyness measures

In [3], local busyness was measured by "minimum total
abe
variation" (MTV). For the 3x3 neighborhood def, this is
o ghi
defined by

min([|a-b|+|b-c|+|d-e|+|e-£f|+|g=-h|+|h-i],
|a-d|+|d-g|+|b-e|+|e-h|+|c-f|+|£-i]]

In other words, the "total variation" (sum of absolute gray
level differences of all pairs of adjacent pixels in the neigh-
borhood) is computed for horizontally adjacent pairs and for
vertically adjacent pairs, and the min of the two is then taken.
The min should be high in a busy neighborhood, where many adja-
cent pairs differ, but it should be low in a neighborhood con-
taining a horizontal or vertical edge, since in such a neigh-
borhood there are high horizontal differences but no high ver-
tical ones, or vice versa. Thus the MTV measure should yield
high values throughout a busy region, but not on edges between
smooth regions.

An obvious defect of the MTV as just defined is that it
does yield high values at pixels on oblique edges, where there
are high differences in both directions. To alleviate this
problem, we can take differences in the diagonal directions as
well, and take a min over four directions. Note, however, that
there are only four adjacent pairs in each diagonal direction
in a 3x3 neighborhood--i.e., the sums of diagonal absolute

differences are




Thus to define a four-direction MTV, we should use averages

|a~e|+|e-i|+|d-h|+|b-£]| and |c-e|+|e~g|+|b-d|+|£-h|

rather than sums, e.g.
min [%(|a-b|+|b-c|+|d-e}+]e-f|+|th|+|h-i|), )
Flla-a|+]a-g|+|b-e|+|e-h|+|c-£|+|£-i]),
$la-e|+|e-i|+|a-h|+|b-£]),
L(lc-e]+|e-g|+|b-a]|+|£-h])]
Another possible measure of local busyness is the "median

absolute difference" (MAD). For the 3x3 neighborhood, this is

defined as the median of the absolute differences of all twelve

pairs of horizontally or vertically adjacent pixels. 1In a busy
region, the median should be about the same as the mean. On
an edge between two smooth regions, on the other hand, the
median should be low, since only a minority of the differences
are high. For example, in the neighborhood ggi, there are four
differences of 1 {(two horizontal and two vertiéal) and eight
of 0, so that the median is 0 even for diagonal edges. Since
this two-direction version of the MAD measure is insensitive
to diagonal edges, a four-direction version was not used in
our experiments.

Busyness measures based on a 3x3 neighborhood are bound
to be highly variable, since there are only a few adjacent L

pairs of points in such a neighborhood. Improved results

should be obtained when larger neighborhood sizes are used;

but if we use.large sizes, the border zones (where the




E neighborhoods overlap two or more regions) become large, and

‘ reliable feature values are hard to obtain in these zones.

To study neighborhood size effects, we used 5x5 versions of

the MTV and MAD measures. In a 5x5 neighborhood, MTV is de-
fined in terms of 20 horizontal and 20 vertical adjacent pairs
(as well as 16 adjacent pairs in each diagonal direction, if

i? the four-direction definition is used), and MAD is defined in
;i terms of 40 horizontal and vertical adjacent pairs; the details

are straightforward.




3. Experiments

3.1 Test data and initial classification

| The experiments in this paper made use of the house image
shown in Figure‘l. which was also used in [3-4]. This image
contains five major types of regions~-sky, brick, shadows (and

roof), bushes, and grass. In order to characterize these

'j regions with respect to the (gray level, local busyness)

‘-i feature pair, the image was hand segmented, as shown in Figure :
1, and mean vectors and covariance matrices for each class
were computed; these are shown, for each of the busyness mea- i
3 sures, in Table 1. We see that two of the classes, shadows

and bushes, have nearly the same mean vector, even though the

bushes appear to be much busyer than the shadows. This is

especially true for the 3x3 MTV measures; the difference is

greatest for the 5x5 MAD measure. ' ‘ ; ?

Assuming that the classes have bivariate Gaussian distri-
butions with the given means and covariances, welcan compute
the maximum-likelihood classification of each pixel. Confusion
matrices showing the resulting errors, for each busyness measure,.
] are shown in Table 2. We see that the shadow pixels are almost
all classified as bush when the 3x3 measures are used. This

was to be expected, since the bush class has higher a‘priori

probability (i.e., larger area in the hand segmentation), and

is also more variable, so that its conditional probability
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drops more slowly than that of the shadow class with distance

from the mean. The results are much better using the 5x5

measures.
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3.2 Median filtering results

The classification results can be greatly improved if the
busyness values are smoothed prior to clustering and classifi-
cation. Two smoothing neighborhoods were used in our experi-
ments, 3x3 and 5x5. The smoothing method used was median
filtering, since it tends not to blur boundaries between re-
gions. In the interior of a region, the median and mean should
be épproximately equal; but near a region border, the median
will be insensitive to the values obtained from the neighbors
on the other side of the border, while the mean will respond
to these values. This remains true if the median filtering
process is iterated.

Median filtering reduces the variability of the busyness
values in each class, while preserving (at least approximately)
the class means.* When the pixels are classified using these
"tighter" class definitions, the error rates should be re-
duced. Tables 3-4 show the class error rates as functions
of iteration number for the six busyness measures, using 3x3
and 5x5 median filtering, respectively. We see that there
is little or no  improvement over the initial good results
obtained from the 5x5 measures. For the 3x3 measures, a few
iterations of 3x3 filtering, or a single iteration of 5x5
filtering, yield a dramatic improvement, with error rates at

least as low as those obtained from the 5x5 measures.

* We applied median filtering only to the busyness values, not

to the gray levels; applying it to both would presumably have
yielded somewhat greater improvement in the classification
results.
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3.3 Relaxation results

Another possible way of improving the classification re-
sults is to classify the pixels probabilistically, and then
use probabilistic relaxation [5] to iteratively adjust the
probabilities before making the maximum-likelihocd decision.
This method was very effective [4] in improving pixel classi-
fications based on color components in a color version of the
house image--in fact, it was much more effective than smoothing
the color values prior to classification.

The initial class probabilities used in the relaxation pro-
cess are the same as those used for the maximum-likelihood clas-
sification. The compatibility coefficients in the relaxation
formula were computed using mutual information estimates de-
rived from the initial probabilities, as in [6]; this method
was also used in (4].

Relaxation was found to be effective in reducing the
error rate in our experiments, but no more so than median
filtering prior to classification. Table 5 shows the
class error rates as functions of iteration number (i.e.,
when the most probable class is chosen after the kth itera-
tion, for k=0,1,2,...) for the six busyness measures, using
relaxation based on a 3x3 neighborhood of each pixel. We
see that the improvement in Class 4 is slower (or, for the
5x5 measures, begins late), but that eventually a higher

level of correctness is achieved than with 3x3 median
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filtering (or even with 5x5, in most cases), but at the cost
of an increase in the Class 5 errors.

Relaxation is also slightly effective in improving the
classification results obtained after a few iterations of
median filtering. Table 6 shows the results for the 3x3
four-direction MTV measure when we estimate the class proba-
bilities after four iterations of 5x5 median filtering and
then apply 3x3 relaxation. (There are some slight discre-
pancies in the initial values between Tables 5-6 and Tables

3-4, due to roundoff errors in the i‘nitial probability com-

putations, which were done on two different computers).




4. Concluding remarks

{ Both median filtering and relaxation are effective in

improving the accuracy of pixel classification based on gray

level and busyness. When we use 3x3 busyness measures,
median filtering yields an immediate improvement (especially

for the 5x5 filter; Table 3a is an exception), followed in

most cases (but see Table 4b) by a gradual deterioration as
the process is iterated. Relaxation yields steady improve-
ment for Class 4 over a larger number of iterations, but at
the cost of some deterioration in Class 5. For the 5x5
busyness measures, median filtering yields no improvement,
but relaxation does; and it also provides some improvement

if it is applied after a few iterations of median filtering.
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Figure 1. House picture (bottom) and hand segmentation
into five classes (top). The classes are brick,
sky, grass, shadows, and bushes.

Measure 1 (brick) 2 (sky) 3(grass) 4 (shadows) 5 (bushes)
a) 3x3 MTV, two

directions 32 J63 o .84 335
b) 3x3 MTV, four

directions .40 .63 .42 .92 .20
c) 3x3 MAD .40 +58 I 1.00 1.28
d) 5x5 MTV, two

directions .47 .69 J45 1.06 1.36
e) 5x5 MTV, four

directions .44 .68 .44 1:03 L33
f) 5x5 MAD +37 .49 .44 .89 1.24
Mean gray level 29.21 44.29 33:33 18.95 20.55

Table la. Mean vectors for the five classes using each of
the six busyness measures.
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'i Measure
‘ a) ~.11 -2.68 -.18 1.57 .95
.45 1,74 .23 1.62 .72
b) ~.08 ~2.73 -.18 1.54 .77 %
.43 1.72 .29 1.50 «56
c) -.13 -3.00 -.24 1.42 .92
.43 1.64 .31 1.65 .73
d) -.13 -2.34 -.21 1.36 +66
.49 1.46 .28 1.49 41
e) ~.12 -2.37 -.21 1.39 .62
.47 1.46 .27 1.48 «39
£) ~-.10 -2.13 -.21 .65 .54
.31 .86 .25 .74 «30
(Gray level,
gray level)
covariance 1.93 "17.91 2.92 16.39 28,86

s ke bt e R e s e

Table 1lb. Covariance matrices for the five classes using
each of the six busyness measures (a=-f, as in
Table la). The first number is the (gray level,
busyness) covariance, and the second is
(busyness, busyness).




d)

e)

£)

Table 2.

.11
.02
.08

.92
.01
.12
.02
.08

.93
.01
.12
.02
.08

.90
.01
.08
.02
.06

Confusion matrices for initial classifications using each
The entry in the ith

.00
.00
.00

.00
.94
.00
.00
.01

.00
.94
.00
.00
.00

.00
.94
.00
.00
.01

.88
.00
.01

.02 .

.88
.00
.00

.01

.00
.04
.02

.00
.00
.00
.53
.04

.00
.00
.00
.54
.04

.00
.00
.00
.40
.04

.87

.05
.03
.00
.57
.88

of the six busyness measures (a-f).

row and jth column is the fraction of the time a pixel in
class i was assigned to class j, 1%i,j=5,
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a)

b)

Iteration

0

N Y e W N

Iteration

Class

1
.92
.91
.92
.92
.92
.92
.92
.92

Class

SN O s W= O

Table 3.

1
.92
.90
.90
.90
.90
.90
.91
.91

Class error rates as functions of iteration
number for the six busyness measures (a-f) using

2
.94
.94
.94
.94
.94

.94
.94

.94
.94
.94

.87
.88
.88
.88
.88
.87
.87
.87

.92

Lot s T 9

.04
.04

.49
.56
.58
.58
.59

.06
.54
.54
.53
.53
.53
.52
.52

3x3 median filtering.

.83

.83

.88
.87
.87
.87
.87
.87
.88
.88

foiteem sz




Class
) Iteration 1 2 3 4 5
0 .93 .93 .88 .04 .89
& 1 .90 .93 .92 .45 .86
2 .90 .93 .92 .46 .86
3 .90 .94 .92 .45 .87
4 .91 .94 .92 .43 .87
5 .91 .94 .92 .42 .87
6 .91 .94 .92 .41 .87
7 .91 .94 .92 .40 .87

Class
d) 1Iteration 1l 2 3 4 5
0 <92 .94 .88 .53 .87

.92 .94 .88 .52 .88
.92 .94 .88 .52 .88
.92 .94 .88 .52 . .89
.92 .94 .88 .52 .89
.92 .94 .88 .52 .89
.92 .94 .88 .52 .89
.92 .94 .88 .52 .89

~N N W N

Table 3, continued.




e)

£)

Iteration

0

~ O W N

Iteration

0

~ O W N

Class
1
.93
.92
.92
.92
.92
.90
.90
.90

Class
1
.90
.90
.91

.91
.91

.91

Table

2
.94
.94
.94
.94
.94
.94
.94
.94

.94
.94
.94
.94
.93
.93
.93
.93

o iy 1 AR IR

3
.88
.88
.88
.88
.88
.93
.93
.93

.92
.92
.93
.93
.93
.93
.93
.93

4
.54
.53
.54
.53

.53
.53
.54

.40
.39
.38
.38
.38
.39
.39
.39

3, continued.

.87
.88
.88
.88
.88
.88
.88
.88

.88
.88
.88
.88
.88
.88
.88
.88




a) 1Iteration
0

b) Iteration

0

Table 4. Analogous to Table 3, using 5x5 median
filtering.
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Class
c) Iteration 1 2
0 .93 .93
1 .91 .94
2 .92 .93
3 .90 .93
4 .90 .93
5 .91 .92
6 .91 .92
7 .91 .91
Class
d) 1Iteration 1 2
0 .92 .94
1 .92 .94
2 .89 .93
3 .89 .93
4 .89 .93
5 .90 .93
6 .90 .93
7 .90 .92

3
.88
.92
.93
.93
.93
.93
.93
.93

.88
.88
.93
.93
.93
.93
.93
.93

4
.04
.44
.43
.43
.47
.48
.48
.47

Table 4, continued,

‘ e o i bio e ] i

O B a2 i

o= sttty

M1y AT AP ST £ Su

N R R Ty



a)

! f)

Iteration
0

1
2
3
.4
5
6
7

Iteration

0

~N A N AW NN

1
.93

.89
.90
.90
.90
.90
.90

'92
'92

2
.94
.94
.93
.93
.94
.93
.93
.93

.94
.93
.93
.92
.92
.92
.92
.92

3
.88
.93
.93
.93
.93
.93
.93
.93

.92
.93
.93
.93
.93
.93
.93
.93

4
.54
.53

.52
.50
.50
.49
.49

.40
.37
.38
.38
.38
.38
.37
.37

Table 4, continued.

5
.87
.89
.90
.91
.91
.91
.91
.90

.88
.88
.88
.88
.88
.87
.87
.87

P




| a) Iteration
0

1
2
3
4
5
6
7
8
9

i ol o
AL W N O

Table 5.

1
.92
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93

2
.94
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93

3
.86
.87
.88
.88
.88
.88
.88
.88
.88
.88
.88
.88
.88
.89
.89
.89
.89

Analogous to Table 3,
relaxation applied to
class probabilities.

4 5
.04 .89
.04 .89
.05 .89
.06 .89
.06 .B9
.07 .88
.07 .88
.07 .88
.20 .87
.37 .82
.46 .80
.48 .79
.53 .78
.56 .78
.58 .77
.59 .76
.61 .76
using 3x3

the initial
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Class
b) 1Iteration 1 2 3 4 5
0 .92 .94 .8 .06 .87
1 1 .93 .92 .87 .06 .87
| 2 .93 .92 .88 .07 .88
! 3 .93 .92 .88 .07 .87
: 4 .94 .92 .88 .16 .87
4 5 .94 .92 .88 .33 .84 f
6 .94 .92 .88 .41 .82 :
7 .94 .92 .88 .47 .82 ‘
8 .94 .92 .88 .50 .82
9 .94 .92 .88 .52 .81
10 .94 .92 .88 .54 .81
11 .94 .92 .88 .55 .80
12 .94 .92 .88 .55 .80
13 .94 .92 .88 .55 .80
14 .94 .92 .88 .56 .79
15 .94 .92 .88 .57 .79
16 .94 .92 .88 .58 .78

Table 5, continued.
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Iteration
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Class

1
+92
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94
.94

2
.93
.92
.92
<92
.92
+92
«92
.92
«92
52
92
»92
<92
.92
«92
«92
.92

3
.86
.88
.89
.89
.89
.89
.89
.89
.89
.89
.89
.89
.89
.89
.89
.89
.89

4
.04
.04
.05
.05
.06
.07
.08
<27
«33
.41
.45
.48
.49
.50
.50
.50
.51

Table 5, continued.

5
.83
.83
.83
.84
.84
.84
.84
.85
.84
.85
.85
.85
.85
.85
.85
.85
.85
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d)

Itération

0

O 0O~ O B & W N M

T
N U W N O

Class

1
.92
.92
.92
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93

.94
.92
.92
.92

.92
.92
.92
.92
.92
.92
.92
.92
.92
.92
.92
.92

.86
.88
.89
.89
.89
.89
.89

.89
.89
.89
.89
.89
.89
.89
.89
.89

.53
.52
.52
.51
.52
«52

" .53

.53
.54
.55
.56

.58
.60
.61
.63
.64

Tabie 5, continued.

.86
.86
.87
.87
.86
.86
.86
.86
.86
.86
.85
.85
.85
.85
.84
.84
.83




e)

Iteration

0

O 0 O D W N

e e e
N e W N O

Class
1l
.92
.92
.92
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93

Table 5, continued.

2
.94
.92
.92
.92

.92

.92
.92
.92
.92
.92
.92
.92
.92
.92
.92
.92
.92

3
.86
.88
.89
.89

.89
.89
.89
.89
.89
.89
.89
.89
.89

.90
.90

4
.54
.54
.53
.53
.53
.53
.54
.55
.56
.56
.57
.59
.60
.61
.63
.64
.65

5
.86
.87
.87
.87
.87
.86
.86
.86
.86
.86
.85
.85
.85
.85
.84
.84
.83

4 g o Y




& Class

r f) Iteration 1 2 3 4 5
| . 0 .90 .94 .91 .39 .87
1 .93 .92 .90 .39 .87
‘ 2 .93 .92 .90 .39 .87
3 .93 .92 .90 .39 .88
4 .93 .92 .91 .39 .87
5 .93 .92 .91 .39 .87
6 .94 .92 .91 .39 .87
7 .94 .92 .91 .39 .87
8 .94 .92 .91 .39 .87
9 .94 .92 .91 .40 .87
10 .94 .92 .91 .41 .87
11 .94 .92 .91 .43. .86

12 .94 .92 .91 .45 .86
13 .94 .92 .91 .47 .85
14 .94 .92 .91 .49 .84
15 .94 .92 .91 .50 .83
16 .94 .92 .91 .51 .82

Table 5, continued.
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Table 6.

Class

1 2 3 4 5
.93 .94 .86 .57 .83
.93 .93 .85 .57 .85

.94 .92 .85 .57 .85
.94 .92 .86 .57 .85
.94 .92 .86 .57 .85
.94 .92 .86 .57 .85
.94 .92 .86 .58 .85

.94 .92 .86 .58 .85
.94 .92 .86 .58 .85
.94 .92 .86 .58 .84

.94 .92 .86 .58 .84
.94 .92 .86 .59 .83

- .94 .92 .86 .60 .82
.94 .92 .86 .61 .81
.94 .92 .86 .62 .81
.94 .92 .86 .62 .80

.94 .92 .86 .63 .80

Analogous to Table 5a, but with
relaxation applied to the class
probabilities estimated after four
iterations of 5x5 median filtering.
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